3.414 \(\int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx\)

Optimal. Leaf size=119 \[ \frac {64 a^3 \sin (c+d x)}{15 d \sqrt {\cos (c+d x)} \sqrt {a \sec (c+d x)+a}}+\frac {16 a^2 \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \sec (c+d x)+a}}{15 d}+\frac {2 a \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d} \]

[Out]

2/5*a*cos(d*x+c)^(3/2)*(a+a*sec(d*x+c))^(3/2)*sin(d*x+c)/d+64/15*a^3*sin(d*x+c)/d/cos(d*x+c)^(1/2)/(a+a*sec(d*
x+c))^(1/2)+16/15*a^2*sin(d*x+c)*cos(d*x+c)^(1/2)*(a+a*sec(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.23, antiderivative size = 119, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 3, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.120, Rules used = {4264, 3809, 3804} \[ \frac {64 a^3 \sin (c+d x)}{15 d \sqrt {\cos (c+d x)} \sqrt {a \sec (c+d x)+a}}+\frac {16 a^2 \sin (c+d x) \sqrt {\cos (c+d x)} \sqrt {a \sec (c+d x)+a}}{15 d}+\frac {2 a \sin (c+d x) \cos ^{\frac {3}{2}}(c+d x) (a \sec (c+d x)+a)^{3/2}}{5 d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(5/2)*(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(64*a^3*Sin[c + d*x])/(15*d*Sqrt[Cos[c + d*x]]*Sqrt[a + a*Sec[c + d*x]]) + (16*a^2*Sqrt[Cos[c + d*x]]*Sqrt[a +
 a*Sec[c + d*x]]*Sin[c + d*x])/(15*d) + (2*a*Cos[c + d*x]^(3/2)*(a + a*Sec[c + d*x])^(3/2)*Sin[c + d*x])/(5*d)

Rule 3804

Int[Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(d_.)], x_Symbol] :> Simp[(-2*a*Co
t[e + f*x])/(f*Sqrt[a + b*Csc[e + f*x]]*Sqrt[d*Csc[e + f*x]]), x] /; FreeQ[{a, b, d, e, f}, x] && EqQ[a^2 - b^
2, 0]

Rule 3809

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> -Simp[(a*Co
t[e + f*x]*(a + b*Csc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^n)/(f*m), x] + Dist[(b*(2*m - 1))/(d*m), Int[(a + b*C
sc[e + f*x])^(m - 1)*(d*Csc[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 - b^2, 0]
&& EqQ[m + n, 0] && GtQ[m, 1/2] && IntegerQ[2*m]

Rule 4264

Int[(u_)*((c_.)*sin[(a_.) + (b_.)*(x_)])^(m_.), x_Symbol] :> Dist[(c*Csc[a + b*x])^m*(c*Sin[a + b*x])^m, Int[A
ctivateTrig[u]/(c*Csc[a + b*x])^m, x], x] /; FreeQ[{a, b, c, m}, x] &&  !IntegerQ[m] && KnownSecantIntegrandQ[
u, x]

Rubi steps

\begin {align*} \int \cos ^{\frac {5}{2}}(c+d x) (a+a \sec (c+d x))^{5/2} \, dx &=\left (\sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {(a+a \sec (c+d x))^{5/2}}{\sec ^{\frac {5}{2}}(c+d x)} \, dx\\ &=\frac {2 a \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{5 d}+\frac {1}{5} \left (8 a \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {(a+a \sec (c+d x))^{3/2}}{\sec ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {16 a^2 \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{15 d}+\frac {2 a \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{5 d}+\frac {1}{15} \left (32 a^2 \sqrt {\cos (c+d x)} \sqrt {\sec (c+d x)}\right ) \int \frac {\sqrt {a+a \sec (c+d x)}}{\sqrt {\sec (c+d x)}} \, dx\\ &=\frac {64 a^3 \sin (c+d x)}{15 d \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)}}+\frac {16 a^2 \sqrt {\cos (c+d x)} \sqrt {a+a \sec (c+d x)} \sin (c+d x)}{15 d}+\frac {2 a \cos ^{\frac {3}{2}}(c+d x) (a+a \sec (c+d x))^{3/2} \sin (c+d x)}{5 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.24, size = 64, normalized size = 0.54 \[ \frac {a^2 \sqrt {\cos (c+d x)} (28 \cos (c+d x)+3 \cos (2 (c+d x))+89) \tan \left (\frac {1}{2} (c+d x)\right ) \sqrt {a (\sec (c+d x)+1)}}{15 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(5/2)*(a + a*Sec[c + d*x])^(5/2),x]

[Out]

(a^2*Sqrt[Cos[c + d*x]]*(89 + 28*Cos[c + d*x] + 3*Cos[2*(c + d*x)])*Sqrt[a*(1 + Sec[c + d*x])]*Tan[(c + d*x)/2
])/(15*d)

________________________________________________________________________________________

fricas [A]  time = 1.09, size = 79, normalized size = 0.66 \[ \frac {2 \, {\left (3 \, a^{2} \cos \left (d x + c\right )^{2} + 14 \, a^{2} \cos \left (d x + c\right ) + 43 \, a^{2}\right )} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )}{15 \, {\left (d \cos \left (d x + c\right ) + d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(5/2),x, algorithm="fricas")

[Out]

2/15*(3*a^2*cos(d*x + c)^2 + 14*a^2*cos(d*x + c) + 43*a^2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sqrt(cos(d*
x + c))*sin(d*x + c)/(d*cos(d*x + c) + d)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (a \sec \left (d x + c\right ) + a\right )}^{\frac {5}{2}} \cos \left (d x + c\right )^{\frac {5}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(5/2),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)^(5/2)*cos(d*x + c)^(5/2), x)

________________________________________________________________________________________

maple [A]  time = 1.82, size = 75, normalized size = 0.63 \[ -\frac {2 \left (3 \left (\cos ^{3}\left (d x +c \right )\right )+11 \left (\cos ^{2}\left (d x +c \right )\right )+29 \cos \left (d x +c \right )-43\right ) \left (\sqrt {\cos }\left (d x +c \right )\right ) \sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, a^{2}}{15 d \sin \left (d x +c \right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(5/2),x)

[Out]

-2/15/d*(3*cos(d*x+c)^3+11*cos(d*x+c)^2+29*cos(d*x+c)-43)*cos(d*x+c)^(1/2)*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)
/sin(d*x+c)*a^2

________________________________________________________________________________________

maxima [A]  time = 1.26, size = 60, normalized size = 0.50 \[ \frac {{\left (3 \, \sqrt {2} a^{2} \sin \left (\frac {5}{2} \, d x + \frac {5}{2} \, c\right ) + 25 \, \sqrt {2} a^{2} \sin \left (\frac {3}{2} \, d x + \frac {3}{2} \, c\right ) + 150 \, \sqrt {2} a^{2} \sin \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} \sqrt {a}}{30 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(5/2)*(a+a*sec(d*x+c))^(5/2),x, algorithm="maxima")

[Out]

1/30*(3*sqrt(2)*a^2*sin(5/2*d*x + 5/2*c) + 25*sqrt(2)*a^2*sin(3/2*d*x + 3/2*c) + 150*sqrt(2)*a^2*sin(1/2*d*x +
 1/2*c))*sqrt(a)/d

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int {\cos \left (c+d\,x\right )}^{5/2}\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{5/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(5/2)*(a + a/cos(c + d*x))^(5/2),x)

[Out]

int(cos(c + d*x)^(5/2)*(a + a/cos(c + d*x))^(5/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(5/2)*(a+a*sec(d*x+c))**(5/2),x)

[Out]

Timed out

________________________________________________________________________________________